

#FORSAFERCARS

Version 1.1
December 2025

Qualification Procedure for Human Body Models

Crash Protection

Technical Bulletin CP 550

Implementation 1st January 2026

PREFACE

DISCLAIMER: Euro NCAP has taken all reasonable care to ensure that the information published in this protocol is accurate and reflects the technical decisions taken by the organisation. In the unlikely event that this protocol contains a typographical error or any other inaccuracy, Euro NCAP reserves the right to make corrections and determine the assessment and subsequent result of the affected requirement(s).

CONTENTS

1 INTRODUCTION	3
1.1 General	3
2 AVERAGE MALE HUMAN BODY MODEL QUALIFICATION	4
2.1 Qualification procedure overview	4
2.2 Qualification requirements	4
3 APPENDIX – REFERENCE NODES	26
4 APPENDIX – LIST OF HBMS USED TO DEFINE MINIMUM THRESHOLDS	28

1 INTRODUCTION

This document supports the Crash Protection – Frontal Impact Protocol by providing details on the required qualification of human body models. Such models can be used to provide respective simulation data to be eligible for the full points for the virtual loadcases.

In addition to this document, it is also necessary to refer to the Euro NCAP Technical Bulletin CP 540 for reference point definitions and CP 551 with respect to mesh quality. Additional reference documents and additional information are available using the following links:

- [Euro NCAP | Protocols](#)
- <https://openvt.eu/EuroNCAP/hbm4vt-validation-catalogue>

In future, qualification procedures for additional HBM anthropometries will be incorporated into the Euro NCAP protocol(s) and this document will also be updated accordingly. Another future update will detail requirements for hashing simulation inputs, essentially making sure that the validation setups have not been modified beyond the specific adaptions allowed to include the respective HBM. Likewise, hashing can be used to determine whether a used HBM was changed compared to a previously qualified version of the model.

1.1 General

In the context of the present document, a human body model (HBM) is considered a detailed model if it represents the human body in accordance with CP 540. Other human models, such as those lacking a skeleton, cannot be qualified with the procedure described here.

In the initial implementation, starting on 1st January 2026, the results from the frontal simulations using HBMs qualified based on this document, will only be used for monitoring. Specifically, no injury risks are assessed. However, rib fracture risk is planned to be assessed using a strain-based evaluation from 2029 onwards. To improve the related data collection for monitoring, direct element failure, replicating fracture, shall not be enabled in the HBMs, in particular in the thorax region.

2 AVERAGE MALE HUMAN BODY MODEL QUALIFICATION

2.1 Qualification procedure overview

The procedure includes two distinct paths: “full qualification,” which covers all load cases, and “comparability demonstration,” a streamlined path that evaluates a subset of those cases. For a newly developed HBM, or one that fails to meet the comparability requirements in section 2.2.5, full qualification is required. For a previously qualified off-the-shelf HBM, the comparability demonstration alone is sufficient.

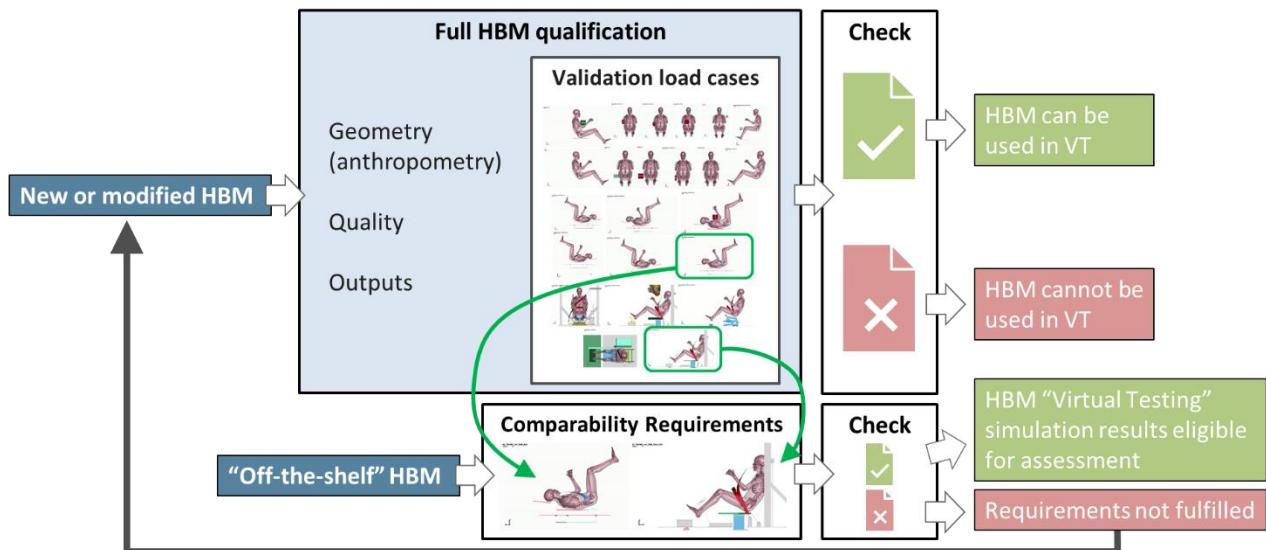


Figure 1: Overview on the possible paths to HBM qualification

2.1.1 Full qualification

Before an HBM can be used for virtual testing at Euro NCAP, evidence must show that the model is sufficiently biofidelic across all validation load cases listed in section 2.2.4. If all criteria in section 2.2 are met, Euro NCAP will grant approval of the HBM for use in virtual testing and issue a certificate of qualification.

2.1.2 Comparability demonstration

If an HBM has already been approved for virtual testing by Euro NCAP, the certificate of qualification from section 2.1.1 must be provided along with the comparability demonstration. For this step, only the load cases and criteria in section 2.2.5 must be fulfilled and demonstrated. If these requirements are not met, the full qualification must be repeated.

2.2 Qualification requirements

The HBM qualification requirements for anthropometry, quality, outputs, and validation load cases are detailed in the following sections.

All supporting materials, including experimental data, processing scripts, and simulation models, are available at <https://openvt.eu/EuroNCAP/hbm4vt-validation-catalogue>. Users may only modify the setups to adjust required parameters, file names, and paths to match their specific HBM.

2.2.1 Anthropometry

To ensure the HBM represents an average adult male anthropometry¹, the following criteria must be met within a 5% tolerance for each.

- Body Mass: 77.3 kg (± 3.865 kg)
- Stature: 175.3 cm (± 8.765 cm)
- Body Mass Index (BMI): $25.15 \text{ kg} \cdot \text{m}^{-2}$ ($\pm 1.2575 \text{ kg} \cdot \text{m}^{-2}$)
- Sitting height to stature ratio (SHS): 0.52 (± 0.026)

The posture of the HBM must remain unchanged during simulations conducted as part of the comparability demonstration and the *Crash Protection – Frontal Impact Protocol*. Any changes to posture, except for adjustments to the extremities, require a full qualification of the model. Anthropometry and posture data must be entered into the spreadsheet as specified in the VTC protocol.

2.2.2 Model quality

The mesh quality of the original model needs to be documented according to TB CP 551.

2.2.3 HBM outputs

Table I lists the required outputs that the HBM needs to be equipped with. All outputs need to be present in the respective solver output files (e.g. binout, ERFH5...).

Table II lists additional outputs that are defined in the master files of certain setups and do not need to be defined within the HBM model. In case one of these nodes is defined in the HBM as a landmark, make sure to remove the latter from the outputs written to the database file, as otherwise some FE solvers will not initialise. A future update of the setups will focus on preventing potential double definitions for nodal histories.

The correct IDs for all outputs listed in Table I and Table II need to be filled into the HBM ID definition file. This file shall be named 00_[HBMname]_[version]_[anthropometry]_IDs.def (e.g. 00_GHBMC_v6.2_50M_IDs.def)

For outputs where local outputs are requested, the sign convention must follow SAE J211 (2007).

A graphical explanation of the listed nodes is provided in the documentation of each loadcase available on <https://openvt.eu/EuroNCAP/hbm4vt-validation-catalogue>, the appendix or CP 540 as shown in the column “reference”.

Table I: Required HBM outputs

Short name in ID.def file	Body region	Detailed Location	Output type	Reference	Used also in virtual testing
Head_CoG	Head	Centre of Gravity	Node history (coordinate,	CP 540	x

¹ According to Schneider, L. W., Robbins, D. H., Pflüg, M. A., & Snyder, R. G. (1983). *Development of anthropometrically based design specifications for an advanced adult anthropomorphic dummy family, volume 1: Final Report. UMTRI-83-53*. UMTRI.

Short name in ID.def file	Body region	Detailed Location	Output type	Reference	Used also in virtual testing
			displacement, velocity, rot. velocity, acceleration)		
Head_CoG_loc	Head	Centre of Gravity local	Node history (local displacement, velocity, rot. velocity, acceleration) – coordinate system is defined with the Frankfort plane as x-y plane and z facing downwards in the midsagittal plane	CP 540	x
Clavicle_left_inner	Thorax – clavicle	Node on clavicle bone at 3D midpoint between most medial and lateral nodes of the clavicle	Node history (coordinate, displacement, velocity, acceleration)	Figure 3	
Clavicle_left	Thorax – clavicle	Node on the skin which is closest to the node Clavicle_left_inner projected in anterior direction	Node history (coordinate, displacement, velocity, acceleration)	Figure 4	
Chest_defl_Sternum_mid	Thorax – sternum	Node on sternum at midpoint between Jugular Notch and xiphoid processus with local coordinate system in T8	Node history (coordinate, displacement, velocity, acceleration)	Figure 5	
T1	Spine – T1	Node at geometric centre of all nodes of vertebral body of T1	Node history (coordinate, displacement, velocity, acceleration)	Consistent to T8	x
T8	Spine – T8	Node at geometric centre of all nodes	Node history (coordinate,	CP 540	x

Short name in ID.def file	Body region	Detailed Location	Output type	Reference	Used also in virtual testing
		of vertebral body of T8	displacement, velocity, acceleration)		
L2	Spine – L2	Node at geometric centre of all nodes of vertebral body of L2	Node history (coordinate, displacement, velocity, acceleration)	Consistent to T8	x
Pelvis	Sacrum	Midpoint of right and left posterior superior iliac spines (PSIS) connected to sacrum	Node history (coordinate, displacement, velocity, acceleration)	Figure 6	x
Pubic_Symphysis	Pelvis	Cross section in the midsagittal plane of the pubic symphysis with local coordinate system (SAE)	Cross-sectional Forces and Moments	Figure 7	x
AC_right	Pelvis	Node ID on centre of right Acetabulum	Node history (coordinate, displacement, velocity, acceleration)	CP 540	x
AC_left	Pelvis	Node ID on centre of left Acetabulum	Node history (coordinate, displacement, velocity, acceleration)	CP 540	x
Hip_center_right	Pelvis	Node representing the centre of a sphere fitted into the right acetabulum ²	Node history (coordinate, displacement, velocity, acceleration)		x
Hip_center_left	Pelvis	Node representing the centre of a	Node history (coordinate,		x

² A script to derive the centre of the sphere is available at https://openvt.eu/EuroNCAP/vtc-hbm-templates/tree/main/Hip_Center_Calculation. Used in vehicle simulations for positioning and outputs. Until further notice, AC can be also used for positioning in qualification setups (no need to rerun). However, HBM providers need to ensure that users know how to position the HBM in the comparability loadcases to ensure consistency to the results from the full qualification.

Short name in ID.def file	Body region	Detailed Location	Output type	Reference	Used also in virtual testing
		sphere fitted into the left acetabulum ²	displacement, velocity, acceleration)		
SC_left	Scapula	Shoulder reference point left	Node history (coordinate, displacement, velocity, acceleration)	CP 540	x
SC_right	Scapula	Shoulder reference point right	Node history (coordinate, displacement, velocity, acceleration)	CP 540	x
JN	Sternum	Jugular Notch	Node history (coordinate, displacement, velocity, acceleration)	Figure 5	x
XP	Sternum	Tip of xiphoid process	Node history (coordinate, displacement, velocity, acceleration)	Figure 5	x
HM_left	Humerus	Midpoint of the most caudal-lateral point on the lateral epicondyle and caudal-medial point on the medial epicondyle of the humerus left	Node history (coordinate, displacement, velocity, acceleration)	CP 540	x
HM_right	Humerus	Midpoint of the most caudal-lateral point on the lateral epicondyle and caudal-medial point on the medial epicondyle of the humerus right	Node history (coordinate, displacement, velocity, acceleration)	CP 540	x
US_left	Ulna	Tip of ulnar styloid left	Node history (coordinate, displacement,	CP 540	x

Short name in ID.def file	Body region	Detailed Location	Output type	Reference	Used also in virtual testing
			velocity, acceleration)		
US_right	Ulna	Tip of ulnar styloid right	Node history (coordinate, displacement, velocity, acceleration)	CP 540	x
FE_left	Femur	Midpoint of lateral and medial femoral epicondyle left	Node history (coordinate, displacement, velocity, acceleration)	CP 540	x
FE_right	Femur	Midpoint of lateral and medial femoral epicondyle right	Node history (coordinate, displacement, velocity, acceleration)	CP 540	x
IM_left	Tibia/Fibula	Inter-malleolar point left	Node history (coordinate, displacement, velocity, acceleration)	CP 540	x
IM_right	Tibia/Fibula	Inter-malleolar point right	Node history (coordinate, displacement, velocity, acceleration)	CP 540	x
Acromion_left	Upper Extremities	Most distal node on left acromion	Node history (coordinate, displacement, velocity, acceleration)	Loadcase Manual (Compigne et al. 2004) ³	x
Acromion_right	Upper Extremities	Most distal node on right acromion	Node history (coordinate, displacement, velocity, acceleration)	Loadcase Manual (Compigne et al. 2004) ³	x
RibR_1	Thorax - rib	Part IDs which form the cortical	Object (strains)		x

³ Note that for Compigne et al. 2004, these nodes (Acromion_left/right) have to be defined in the master file. In case these are the same nodes as the landmarks in the HBM, make sure to remove the latter from the outputs written to the database file, as otherwise some FE solvers will not initialise. This issue will be resolved in a future update of the Compigne et al. 2004 setup.

Short name in ID.def file	Body region	Detailed Location	Output type	Reference	Used also in virtual testing
		bone of the 1 st rib on the right side			
RibR_2	Thorax - rib	Part IDs which form the cortical bone of the 2 nd rib on the right side	Object (strains)		x
RibR_3	Thorax - rib	Part IDs which form the cortical bone of the 3 rd rib on the right side	Object (strains)		x
RibR_4	Thorax - rib	Part IDs which form the cortical bone of the 4 th rib on the right side	Object (strains)		x
RibR_5	Thorax - rib	Part IDs which form the cortical bone of the 5 th rib on the right side	Object (strains)		x
RibR_6	Thorax - rib	Part IDs which form the cortical bone of the 6 th rib on the right side	Object (strains)		x
RibR_7	Thorax - rib	Part IDs which form the cortical bone of the 7 th rib on the right side	Object (strains)		x
RibR_8	Thorax - rib	Part IDs which form the cortical bone of the 8 th rib on the right side	Object (strains)		x
RibR_9	Thorax - rib	Part IDs which form the cortical bone of the 9 th rib on the right side	Object (strains)		x
RibR_10	Thorax - rib	Part IDs which form the cortical bone of the 10 th rib on the right side	Object (strains)		x
RibR_11	Thorax - rib	Part IDs which form the cortical bone of the 11 th	Object (strains)		x

Short name in ID.def file	Body region	Detailed Location	Output type	Reference	Used also in virtual testing
		rib on the right side			
RibR_12	Thorax - rib	Part IDs which form the cortical bone of the 12 th rib on the right side	Object (strains)		x
RibL_1	Thorax - rib	Part IDs which form the cortical bone of the 1 st rib on the left side	Object (strains)		x
RibL_2	Thorax - rib	Part IDs which form the cortical bone of the 2 nd rib on the left side	Object (strains)		x
RibL_3	Thorax - rib	Part IDs which form the cortical bone of the 3 rd rib on the left side	Object (strains)		x
RibL_4	Thorax - rib	Part IDs which form the cortical bone of the 4 th rib on the left side	Object (strains)		x
RibL_5	Thorax - rib	Part IDs which form the cortical bone of the 5 th rib on the left side	Object (strains)		x
RibL_6	Thorax - rib	Part IDs which form the cortical bone of the 6 th rib on the left side	Object (strains)		x
RibL_7	Thorax - rib	Part IDs which form the cortical bone of the 7 th rib on the left side	Object (strains)		x
RibL_8	Thorax - rib	Part IDs which form the cortical bone of the 8 th rib on the left side	Object (strains)		x
RibL_9	Thorax - rib	Part IDs which form the cortical	Object (strains)		x

Short name in ID.def file	Body region	Detailed Location	Output type	Reference	Used also in virtual testing
		bone of the 9 th rib on the left side			
RibL_10	Thorax - rib	Part IDs which form the cortical bone of the 10 th rib on the left side	Object (strains)		x
RibL_11	Thorax - rib	Part IDs which form the cortical bone of the 11 th rib on the left side	Object (strains)		x
RibL_12	Thorax - rib	Part IDs which form the cortical bone of the 12 th rib on the left side	Object (strains)		x
Ribs_Cort	Thorax - rib	Part IDs of all cortical rib bones	Object (strains)		x
HBM_all	Whole HBM	Part IDs of all HBM parts	Energies and added mass		x

Table II below lists the additional outputs that are defined in the master files of certain setups.

Table II: Additional setup specific outputs

Short name in ID.def file	Body region	Detailed Location	Output type	Reference	Used also in virtual testing
Thorax_4IS	Thorax - Skin	Node on the skin at the mid-height of 4th intercostal space on the mid sagittal plane projected anterior	Node history (coordinate, displacement, velocity, acceleration)	Figure 5	
Thorax_4ISi	Thorax – sternum	Node on the anterior surface of the sternum at the height of 4th intercostal space on the mid sagittal plane	Node history (coordinate, displacement, velocity, acceleration)	Figure 5	
Thorax_BxS	Thorax – skin	Node ID on outer skin of thorax at the location where the belt crosses	Node history (coordinate, displacement,	Table top load case manuals	

Short name in ID.def file	Body region	Detailed Location	Output type	Reference	Used also in virtual testing
		the sternum in mid sagittal plane	velocity, acceleration)		
Thorax_BxSi	Thorax - sternum	Node ID on the anterior surface of the sternum at the location where the belt crosses the sternum in mid sagittal plane	Node history (coordinate, displacement, velocity, acceleration)	Table top load case manuals	
Thorax_R2R7	Thorax – skin	Node on the outer skin at the midheight between the 2 nd and 7 th costosternal junction in mid sagittal plane	Node history (coordinate, displacement, velocity, acceleration)	Figure 5	
Thorax_R2R7i	Thorax – sternum	Node on anterior sternum surface at the midheight between the 2 nd and 7 th costosternal junction in mid sagittal plane	Node history (coordinate, displacement, velocity, acceleration)	Figure 5	
N_STER_Kroell_1971	Thorax – sternum	Node ID on anterior surface of sternum on Kroell impactor beam axis	Node history (coordinate, displacement, velocity, acceleration)	Loadcase Manual	
N_VERT_Kroell_1971	Spine – T8	Node ID on anterior surface of T8 on Kroell impactor beam axis	Node history (coordinate, displacement, velocity, acceleration)	Loadcase Manual	
N_SKIN_Kroell_1971	Thorax – skin	Node ID on anterior surface of thoracic skin on impactor beam axis	Node history (coordinate, displacement, velocity, acceleration)	Loadcase Manual	
N_PSKI_Kroell_1971	Thorax – skin	Node ID on posterior surface of thoracic skin on	Node history (coordinate, displacement,	Loadcase Manual	

Short name in ID.def file	Body region	Detailed Location	Output type	Reference	Used also in virtual testing
		impactor beam axis	velocity, acceleration)		
N_STER_Compigne_2004	Thorax	Node ID on the midpoint of the manubrium of the sternum	Node history (coordinate, displacement, velocity, acceleration)	Loadcase Manual	
N_VERT_Compigne_2004	Thorax	Node ID on the dorsal point of T1 vertebrae	Node history (coordinate, displacement, velocity, acceleration)	Loadcase Manual	
N_STER_Bouquet_1994	Thorax	Node ID on anterior surface of sternum on impactor beam axis	Node history (coordinate, displacement, velocity, acceleration)	Loadcase Manual	
N_VERT_Bouquet_1994	Thorax	Node ID on anterior surface of T8 on impactor beam axis	Node history (coordinate, displacement, velocity, acceleration)	Loadcase Manual	
N_SKIN_Bouquet_1994	Thorax – skin	Node ID on anterior surface of thoracic skin on impactor beam axis	Node history (coordinate, displacement, velocity, acceleration)	Loadcase Manual	
N_SC90_Shaw_2006	Thorax – skin	Node ID on outer skin on the beam axis on the hub side at 90deg	Node history (coordinate, displacement, velocity, acceleration)	Loadcase Manual	
N_SO90_Shaw_2006	Thorax – skin	Node ID on outer skin on the beam axis opposite to the hub at 90deg	Node history (coordinate, displacement, velocity, acceleration)	Loadcase Manual	
N_SC60_Shaw_2006	Thorax – skin	Node ID on outer skin on the beam axis on the hub side at 60deg	Node history (coordinate, displacement, velocity, acceleration)	Loadcase Manual	

Short name in ID.def file	Body region	Detailed Location	Output type	Reference	Used also in virtual testing
N_SO60_Shaw_2006	Thorax – skin	Node ID on outer skin on the beam axis opposite to the hub at 60deg	Node history (coordinate, displacement, velocity, acceleration)	Loadcase Manual	
N_RC90_Shaw_2006	Thorax – rib	Node ID on lateral rib end on the beam axis on the hub side at 90deg	Node history (coordinate, displacement, velocity, acceleration)	Loadcase Manual	
N_RO90_Shaw_2006	Thorax – rib	Node ID on lateral rib end on the beam axis opposite to the hub at 90deg	Node history (coordinate, displacement, velocity, acceleration)	Loadcase Manual	
N_RC60_Shaw_2006	Thorax – rib	Node ID on lateral rib end on the beam axis on the hub side at 60deg	Node history (coordinate, displacement, velocity, acceleration)	Loadcase Manual	
N_RO60_Shaw_2006	Thorax – rib	Node ID on lateral rib end on the beam axis opposite to the hub at 60deg	Node history (coordinate, displacement, velocity, acceleration)	Loadcase Manual	
N_4S_Shaw_2007	Thorax – skin	Midpoint between most inferior 4th costochondral junction and most superior point of 4th costochondral junction in midsagittal plane	Node history (coordinate, displacement, velocity, acceleration)	Loadcase Manual	
N_8S_Shaw_2007	Thorax – skin	Midpoint between most inferior 8th costochondral junction and most superior point of 8th costochondral junction in midsagittal plane	Node history (coordinate, displacement, velocity, acceleration)	Loadcase Manual	

Short name in ID.def file	Body region	Detailed Location	Output type	Reference	Used also in virtual testing
ASIS_left ⁴	Pelvis	Node ID on left ASIS	Node history (coordinate, displacement, velocity, acceleration)	Loadcase Manual (Uriot et al. 2015)	x
Pubic_Symphysis ⁴	Pelvis	Node ID on most cranial point on pubic symphysis	Node history (coordinate, displacement, velocity, acceleration)	Loadcase Manual (Uriot et al. 2015)	x
Skin ⁵	Thorax – skin	Node ID on outer skin on impactor beam axis	Node history (coordinate, displacement, velocity, acceleration)	Loadcase Manual (Yoganandan et al. 1997)	
Rib ⁵	Thorax – rib	Node ID on outer surface of rib on impactor beam axis	Node history (coordinate, displacement, velocity, acceleration)	Loadcase Manual (Yoganandan et al. 1997)	
Vertebra ⁵	Thorax – vertebra	Node ID on outer surface of vertebra on impactor beam axis	Node history (coordinate, displacement, velocity, acceleration)	Loadcase Manual (Yoganandan et al. 1997)	

2.2.4 Validation loadcases

To demonstrate the HBM's biofidelity, all of the evaluations listed in Table III have to be performed and the minimum objective metric score value has to be achieved.

The boundary condition models will be updated as needed if issues with an HBM or solver version are identified. All revisions of the models on the 3rd digit do not require a re-run.

The simulations shall be performed using a consistent time step for all setups.

The scoring methodology objectively rates the fit of simulation data to experimental PMHS data using statistical response corridors generated by ARCGen⁶. ARCGen uses arc-length re-parameterisation and signal registration to compute an average response and corridors from

⁴ This definition will be moved to the required HBM outputs in Table I in the future, since it represents a fixed landmark.

⁵ The naming will be updated in the future to be consistent with the other definitions in Table II.

⁶ Hartlen, D. C., & Cronin, D. S. (2022). Arc-Length Re-Parametrization and Signal Registration to Determine a Characteristic Average and Statistical Response Corridors of Biomechanical Data. *Frontiers in Bioengineering and Biotechnology*, 10, 843148. <https://doi.org/10.3389/fbioe.2022.843148>

experimental data that account for variability in both axes⁶. Two complementary scores are calculated to assess the similarity between simulation results and experimental data.

- 1) The **Ellipse Score** evaluates how well the simulation data aligns with the characteristic average response by determining whether each simulation point falls within statistical confidence regions defined by ellipses. A point inside the 1 SD ellipse receives a score of 1, a point outside the 2 SD ellipse receives a score of 0, and points between these boundaries are assigned a linearly scaled score.
- 2) The **Dynamic Arc-Length Warping (DALW)** Score refines the assessment by optimizing the alignment of simulation and test data before applying the same ellipse-based scoring method. This process dynamically adjusts the arc-length mapping of the simulation data to better match the characteristic average, ensuring that variations in response trajectories are accounted for. The methodology follows a similar approach to the alignment process used for the magnitude score in ISO 18571, where dynamic time warping is applied to enhance curve comparisons in biofidelity evaluations. The final score reflects the best achievable fit while preserving the underlying structure of the data.

This dual-scoring approach provides a robust and adaptive evaluation of biofidelity, incorporating both localized fit and optimized alignment.

Scores are calculated between x_min and x_max provided in Table III below only. The differences between the required minimum scores are based on the varying quality of the available PMHS test data, boundary condition models and current state of the art of the HBMs used to create the corridors. For the PMHS, unscaled data was used except for Compigne et al., 2004 due to the very low mass and height. Where chest depths were used for normalisation, it is indicated as “compression”. In these cases, the individual PMHS chest depth was used to normalize the response. Likewise, the assessment script relies on the HBM chest depth, to normalize its response.

Scores marked with “-” are not used for scoring, but results need to be provided to Euro NCAP. These will be used for monitoring and potentially updating the procedure in the future. The detailed methodology of the scores was published in a peer-reviewed paper (Ressi et al., 2025⁷). The list of state-of-the-art HBMs used to derive the minimum threshold is provided in Appendix Section 4. While the current version of the threshold is mainly driven by the state of the art, it is aimed to achieve an increase of the thresholds until 2029 to showcase biofidelic behaviour of the HBMs used for virtual testing.

The scores have to be calculated with the Jupyter notebooks available on <https://openvt.eu/EuroNCAP/hbm4vt-validation-catalogue> for the respective load case. The data needs to be shared with the Euro NCAP secretariat as described in section 2.2.6.

Table III: Minimum score thresholds

Configuration	Evaluation	x_min	x_max	Min. Ellipse Score	Min. DALW Score
Bouquet et al., 1994 – Hub Impact, v1.1.1					

⁷ Ressi, F., Schneider, B., Kofler, D., Kannan, V., Hartlen, D. C., & Cronin, D. S. (2025). Development of a Robust Human Body Model Qualification Methodology: Ensuring Biofidelity for Occupant Protection Assessments in Virtual Testing. In International Research Council on the Biomechanics of Injury (Ed.), 2025 IRCOBI Conference Proceedings. IRC-25-22 Vilnius, Lithuania.

	Pelvis Low Speed	Force – Time	0	36ms (end of test data)	-	-
	Pelvis High Speed	Force – Time	0	36ms (end of test data)	0.18	0.45
	Sternum Low Speed	Force – Time	0	57ms (end of test data)	-	0.48
	Sternum High Speed	Force – Time	0	57ms (end of test data)	0.10	0.70
Cesari & Bouquet, 1990, v1.0.0						
	-	Only one test curve available so far	-	-	-	-
Compigne et al., 2004; v1.0.0 ⁸						
	3 m/s 0°	Only two test curves	-	-	-	-
	4 m/s 0°	Force – Deflection	0	Cut unloading at 80% of max deflection	-	0.36
	6 m/s 0°	Only two test curves	-	-	-	-
	1.5 m/s 0°	Force – Deflection	0	Cut unloading at 80% of max deflection	0.12	0.46
	1.5 m/s 15°	Force – Deflection	0	Cut unloading at 80% of max deflection	-	-
	1.5 m/s -15°	Force – Deflection	0	Cut unloading at 80% of max deflection	0.14	0.41
Forman et al., 2005; v1.0.0						
	Tabletop Test	Force-Chest Compression	Cut data so that only data \geq 5% of f_max remains	Up to max. compression of characteristic average	-	0.18
Forman et al., 2013; v1.0.1						
	Far Side Sled Tests	Waiting for test data	0	250 ms	-	-
Kent et al. 2004 - tabletop; v1.0.1						
	Hub	Force - Compression	Cut data so that only data \geq 5% of f_max remains	max. arc length of characteristic average	0.52	0.69
	Belt	Force - Compression	Cut data so that only data \geq 5% of f_max remains	max. arc length of characteristic average	0.48	0.75
	Double-Belt	Force - Compression	Cut data so that only data \geq 5%	max. arc length of	0.65	0.85

⁸ It is still under investigation why scores for several models are very low in this load case.

			of f_max remains	characteristic average		
	Distributed Belt	Force - Compression	Cut data so that only data $\geq 5\%$ of f_max remains	max. arc length of characteristic average	0.61	0.70
Kroell et al., 1971 (taking Lebarb�� & Petit (2012) into account); v1.0.1						
	Hub Impact High Speed	Force- (Hub)Displacement	0	Cut unloading at 80% of max deflection	0.12	0.53
Leport et al., 2007; v1.0.0						
	Hub Test	Impactor Force – Time	0	44 ms (end of test data)	-	0.50
		PSIS Force – Time	0	44 ms (end of test data)	-	0.45
	Mini Sled	Impactor Force – Time	0	44 ms (end of test data)	-	0.41
		PSIS Force – Time	0	44 ms (end of test data)	-	0.52
Lopez-Valdes, 2017 – Frontal Sledtest; v1.1.1						
	Restraint Condition A	Head X Displ- Time	0	159 ms (end of test curves)	-	0.78
		T1 X-Displ – Time	0	159 ms (end of test curves)	-	0.71
		T8 X-Displ – Time	0	159 ms (end of test curves)	-	0.86
		Pelvis X-Displ Time	0	159 ms (end of test curves)	0.42	0.85
	Restraint Condition B	Head X Displ- Time	0	159 ms (end of test curves)	0.34	0.85
		T1 X-Displ – Time	0	159 ms (end of test curves)	-	0.22
		T8 X-Displ – Time	0	159 ms (end of test curves)	-	0.22
		Pelvis X-Displ Time	0	159 ms (end of test curves)	-	0.50
Petit et al., 2019 – Farside Sledtest; v1.0.0						
		Head y displacement – time	0	200 ms (end of simulations)	0.22	0.88
		Head z displacement - time	0	200 ms (end of simulations)	-	0.56

Rupp et al., 2008; v1.0.0 ⁹						
4.9 m/s	Force – Time for left and right knee	0	40 ms (end of loading)	-	0.16	
3.5 m/s	Force – Time for left and right knee	0	50 ms (end of loading)	-	0.14	
1.2 m/s	Force – Time for left and right knee	0	69 ms (end of loading)	-	-	
Salzar et al., 2009; v1.0.0						
0.5 m/s	Force - Compression	0	max. arclength of characteristic average	0.21	0.71	
1 m/s	Force - Compression	0	max. arclength of characteristic average	0.67	0.77	
G. Shaw et al., 2004; v1.0.0						
Up to 50% chest depth	Only one test curve	-	-	-	-	
Up to 30% chest depth	Force – Compression	Force >0	Unloading cut at max. force	-	0.33	
J. M. Shaw et al., 2006; v1.0.0						
Lateral impact (90°)	Force - Compression	0	Displacement and force at 100 ms	0.15	0.49	
Oblique impact (60°)	Force - Compression	0	Displacement and force at 100 ms	-	0.41	
G. Shaw et al., 2007; v1.0.0 ¹⁰						
Non-injurious U – 3rd left rib	Force Displacement	0	Up to max. compression of characteristic average	-	-	
Non-injurious M – mid sternum	Force Displacement	0	Up to max. compression of characteristic average	-	-	
Non-injurious L – 6th right rib	Force Displacement	0	Up to max. compression of characteristic average	-	0.33	
Injurious	Only 2 curves (will be used later for rib fracture risk)	-	-	-	-	
G. Shaw et al., 2009; v1.0.2						
Config. 1	no trajectories available	0	-	-	-	

⁹ The thresholds of this loadcase are still under review. Issues with the boundary condition model were observed for one HBM.

¹⁰ Test data is cut at maximum force.

		Head x displacement – time	0	240 ms (end of test curves)	- ¹¹	0.76
		Head y displacement – time	0	240 ms (end of test curves)	-	0.47
		Head z displacement – time	0	240 ms (end of test curves)	-	-
		T1 x displacement – time	0	240 ms (end of test curves)	-	0.28
		T1 y displacement – time	0	240 ms (end of test curves)	-	0.16
		T1 z displacement – time	0	240 ms (end of test curves)	-	-
	Config. 2	T8 x displacement – time	0	240 ms (end of test curves)	-	0.40
		T8 y displacement – time	0	240 ms (end of test curves)	-	0.27
		T8 z displacement – time	0	240 ms (end of test curves)	-	-
		Pelvis x displacement – time	0	240 ms (end of test curves)	-	0.15
		Pelvis y displacement – time	0	240 ms (end of test curves)	-	0.39
		Pelvis z displacement – time	0	240 ms (end of test curves)	-	-
		Chest Deflection - Time	0	150 ms (end of test curves)	- ¹¹	0.39

Uriot et al. 2015; v1.0.0

	Seat Configuration Front	Hip x-displ vs. time	0	110 ms (max. test data)	0.66	0.88
		Pelvis rotation vs. time	0	110 ms (max. test data)	-	0.21
	Seat Configuration rear	Hip x-displ vs. time	0	110 ms (max. test data)	0.13	0.76
		Pelvis rotation vs. time	0	110 ms (max. test data)	-	0.20

Viano, 1989; v1.0.0

¹¹ Note that while no minimum threshold for the Ellipse Score is defined for this response of interest, the score from the full qualification is still used as a reference for the comparability loadcase (see section 2.2.5). The setup is currently under review to ensure more robust biofidelity scoring in a future version.

Euro NCAP

Version 1.1 — December 2025

	Hip High Speed	Force-Compression	0	Up to max. arc length of characteristic average (test curves at max force)	0.21	0.31
	Hip Medium Speed	No test data available	-	-	-	-
	Hip Low Speed	Force-Compression	0	Up to max. arc length of characteristic average	0.16	0.25
	Abdomen High Speed	Force-Compression	0	Up to max. arc length of characteristic average	0.16	0.18
	Abdomen Medium Speed	Force-Compression	0	Up to max. arc length of characteristic average	-	0.10
	Abdomen Low Speed	Force-Compression	0	Up to max. arc length of characteristic average	0.18	0.22
	Thorax High Speed	Force-Compression	0	Up to max. arc length of characteristic average	0.31	0.41
	Thorax Medium Speed	Force-Compression	0	Up to max. arc length of characteristic average	0.25	0.27
	Thorax Low Speed	Force-Compression	0	Up to max. arc length of characteristic average	0.18	0.20
Yoganandan et al., 1997; v1.0.0						
	Hub Impact	Force - Compression	0	Unloading cut at 80% of max. displacement	-	0.27

2.2.5 Comparability loadcases

To verify that the HBM used in the frontal robustness simulations behaves like the original HBM and that it was not modified, the evaluations listed in the table below have to be performed. The objective metric scores have to be within the defined tolerance to demonstrate that the results are in line with the reference results. Specifically, the scores need to be within ± 0.1 , compared to the reference value documented in the report of the full qualification.

The HBM must be used in the unit system it was qualified in. If this does not align with the unit system of the frontal simulation environment, the environment shall be scaled accordingly. Users are advised to use consistent master file settings with those used in the full qualification (to achieve consistent initial position, belt fit, etc.). The timestep and control cards used in these simulations shall be identical to those (that will be) used in the frontal HBM simulations described in TB CP 551. Furthermore, the simulations of the comparability loadcases need to fulfil the following criteria with respect to added mass (if mass scaling is used):

- Max. mass added due to mass scaling to the total model is less than 5% of the total model mass throughout the simulations.
- Max. mass added due to mass scaling to the HBM is less than 5% of the total HBM mass throughout the simulations.

Only the following modifications to the HBM compared to the full qualification are permissible, provided that the objective metric scores remain within the defined tolerance for the comparability loadcases:

- Adjustments to internal contact settings
- Small mesh adjustments
- Renumbering
- Modifications to control settings consistent with those used in the frontal vehicle simulations according to CP 551

No other changes to the HBM are permitted without confirmation of the Euro NCAP secretariat.

The scores have to be calculated with the respective Jupyter notebooks available on <https://openvt.eu/EuroNCAP/hbm4vt-validation-catalogue> for each load case. The data needs to be shared with the Euro NCAP secretariat as described in section 2.2.6.

Table IV: Comparability loadcases

Configuration	Evaluation	x_min	x_max	Ellipse score	DALW score
Kent et al. 2004 - tabletop; v1.0.1					
Belt	Force - Compression	Cut data so that only data $\geq 5\%$ of f_{max} remains	max. arc length of characteristic average	within ± 0.1 of score from full qualification	within ± 0.1 of score from full qualification
G. Shaw et al., 2009; v1.0.2					
Config. 2	Head x displacement - time	0	240 ms (end of test curves)	within ± 0.1 of score from full qualification ¹²	within ± 0.1 of score from full qualification

¹² Note that while no threshold for a minimum Ellipse Score is defined in Table III for this response of

		Chest Deflection - Time	0	150 ms (end of test curves)	within ± 0.1 of score from full qualification ¹²	within ± 0.1 of score from full qualification
--	--	-------------------------	---	-----------------------------	---	---

interest, the score still needs to be within ± 0.1 of the score in the full qualification to fulfil the comparability requirements.

Euro NCAP

Version 1.1 — December 2025

24

2.2.6 Data to be provided

For each loadcase of each setup, simulation data, processed data and simulation animations (front, side and top views) shall be located in the ‘sim_results’ folder. The processed data files (Dinasaur_diagram_output_HBM__.csv and settings_HBM__.txt) are named automatically with the corresponding HBM name as a suffix when executing the assessment notebook and are located in the ‘data/processed/sim_results’ folder. Depending on the setup, this folder may contain subfolders for different load cases. The folder structure in which the requested data is provided is the same as the folder structure predefined on openVT. Refer to the examples in Figure 2 for the folder structure and contents of the comparability setups.

Although multiple load cases are available for the following setups, the notebook is not yet prepared to evaluate them all at once. The most straightforward workflow is to copy the entire setup folder, modify the master file according to the individual load cases, and run the assessment notebook in each setup folder.

- Forman et al., 2013¹³: Config1, Config2, Config3, Config4, Config5, Config6
- Lopez-Valdes, 2017: RCa, RCb
- Salzar et al., 2009: LC1, LC2
- G. Shaw et al., 2004: LPL, HPL¹³
- G. Shaw et al., 2009: GS1¹³, GS2
- Uriot et al. 2015: SCfront, SCrear

Additionally, the HBM characteristics file named *HBM_characteristics_HBM__.csv* shall be provided. A description of how to take the measurements is provided in the general instructions section on OpenVT (<https://openvt.eu/EuroNCAP/hbm4vt-validation-catalogue/general-instructions>).

Figure 2: Examples of folder structure for shared data (left: Kent et al 2004, right: Shaw et al. 2009)

¹³ For now, no scores are calculated for this loadcase.

3 APPENDIX – REFERENCE NODES

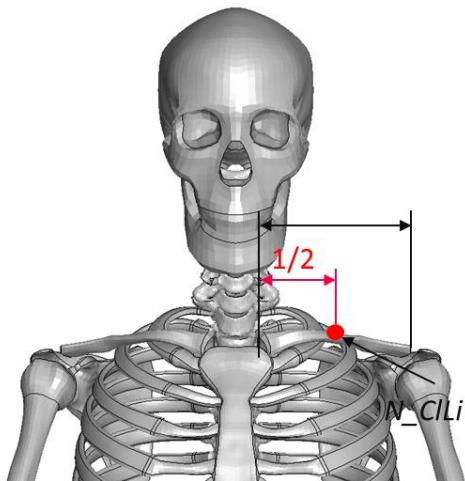


Figure 3: Clavicle_left_inner: Node on anterior surface of left clavicle bone closest to the 3D midpoint between most medial and lateral nodes of the clavicle

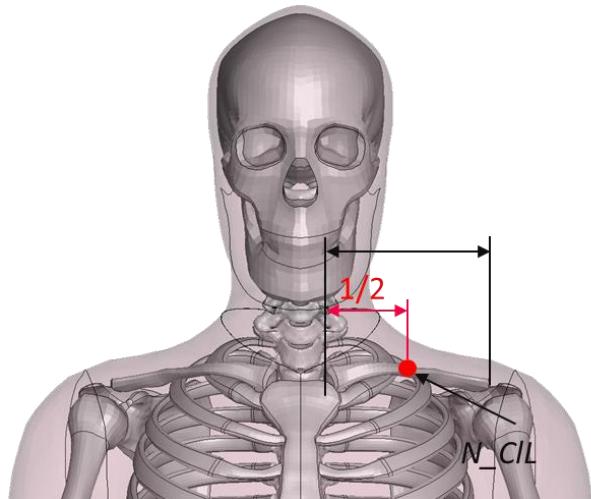


Figure 4: Clavicle_left: Node on the skin which is closest to the node Clavicle_left_inner projected in anterior direction.

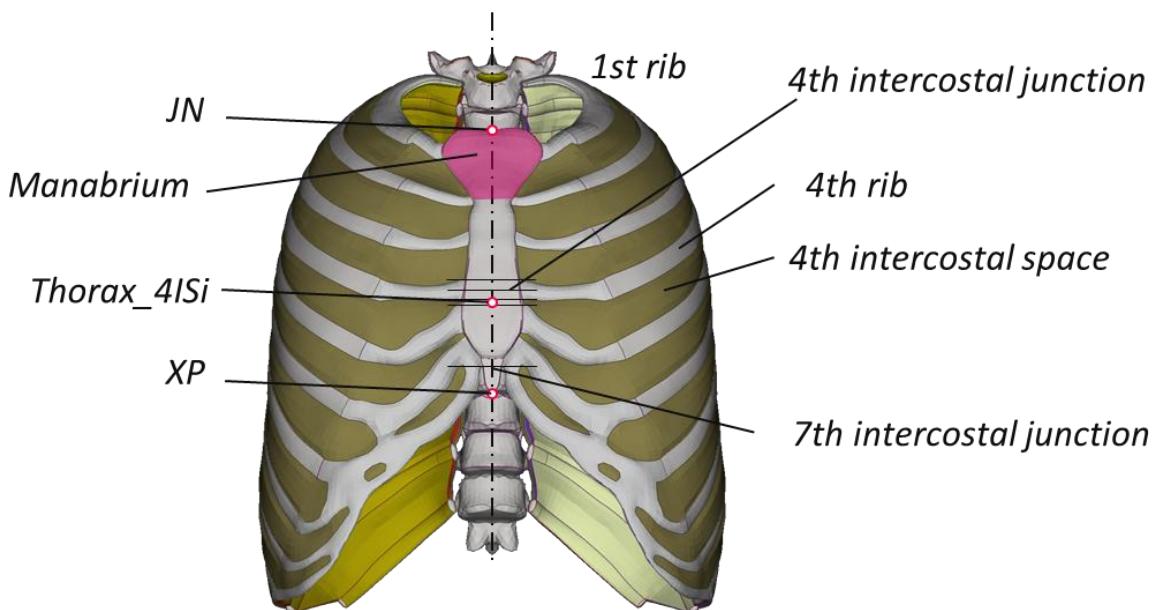


Figure 5: Nodes on the sternum

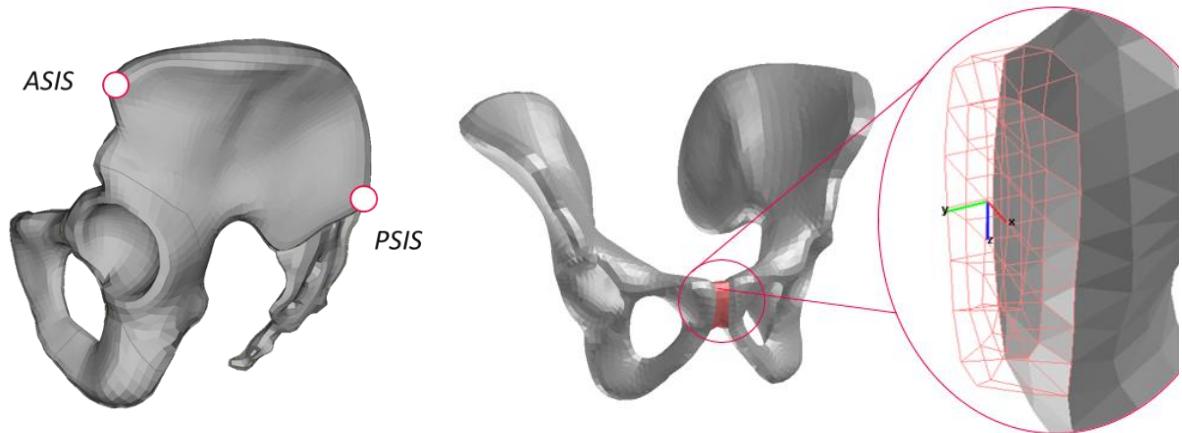


Figure 6: Pelvis landmarks

Figure 7: Local coordinate system in mid-sagittal pubic symphysis cross-section where y faces normal to the cross-sectional surface and x facing anterior and z inferior

4 APPENDIX – LIST OF HBMS USED TO DEFINE MINIMUM THRESHOLDS

LS Dyna:

- GHBMC M50-OS v2.3
- GHBMC M50-OS v2.4
- GHBMC M50-O v6.2.1
- HANS v1.6 50M
- HBM-C v2.5 50M
- SAFER HBM V11.1.0
- THUMS v4.1 50M (run by 6 different users)
- THUMS v7 50M
- VIVA+ v2 50M

VPS:

- THUMS v4.1 50M
- GHBMC M50-O v6.0